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Abstract

We apply probability propagation to the determi-
nation of paths in discrete grids with agents’ dynamics
modeled as Markov Decision Processes. The probabil-
ity flow is used to determine best solutions when there
is only partial knowledge of the obstacle map and the
goal. Distributed probability is used in the backward
flow to attract the agent towards unknown regions in a
sequence of exploration/exploitation steps.

1. Introduction
Modeling the behavior of moving human agents is

currently of great interest both in surveillance and in
robotics. A recent review can be found in [1]. Some
of the authors of this paper have also contributed to the
topic [2][3] with various proposals. The focus of this
paper is on probability-based models, as they seem to
capture in a natural way the uncertainties and the con-
straints imposed by a real scenario.

The original idea to determine paths with a proba-
bility model is due to Attias [6]. Since then, probability
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models have received considerable attention, for exam-
ple as in [4], [5]. Attias proposed that, for a system with
dynamics described by a Markov model, conditioning
on initial and final states (start and goal), and perform-
ing inference on the intermediate states and actions, can
provide a constrained path solution. This method has
been also shown to be directly related to stochastic dy-
namic programming [7] [8]. Some of these ideas are
related to free-energy stochastic models [9] [10] [11]
and to KL-learning [12] and are currently under active
investigation. In our view, the probabilistic paradigm
seems quite appealing, as it may be one of the best ap-
proaches towards a unified view on modeling intelligent
behavior.

In [13], using probability message propagation,
we have simulated single and multiple agents sce-
narios, assuming that the dynamics of each agent is
described by a finite-horizon Markov Decision Pro-
cess of duration T , with Actions {At , t = 1, ...,T − 1}
and States {St , t = 1...,T}, p(a1, ...,aT−1,s1, ...,sT ) =
p(s1)p(a1)∏

T
t=2 p(st |st−1,at−1)p(at |st ,at−1). Joint

distributions on states and actions are characterized
with tensors. Forward and backward flows are com-
puted for optimal trajectories.

Probability propagation in Bayesian factor graphs,
has been studied in [14], with special attention to factor
graphs in Reduced Normal Form (FGrn), that transform
a network of random variable nodes to the combination
of single-input single-output blocks and replicators.

In [13], the Bayesian model considers a known
map with an obstacle avoidance mechanism based on
normalization of the conditional transition distribution.
The backward distribution plays a crucial role in direct-
ing the agents’ choices, as it describes a sort of inverse
dynamics. The agent always reaches the goal, if a fea-
sible solution exists. The backward distribution is also
used for determining the minimum time T to reach the
goal. Figure 1 shows the results of a simulation in which
various agents move in a train station-like grid. There
are counters, rooms, doors, platforms, etc., and each
agent has a starting position and a goal. The agents are



Figure 1. Agents move in a train station-like environment
from their starting positions to their goals

scheduled, in turn, to make their decisions according
to probability messages propagated on the grid. Each
agent is seen by the others as an obstacle and the prob-
ability flow is recomputed at every time step. The be-
haviors appear to be quite natural.

2. The limited knowledge scenario
In the current work, we have elaborated on the

paradigm and have assumed that the map is not known
to the agent a priori, but it is progressively discovered.
An agent knows its position and only the part of the map
that is able to see, as shown in Figure 2. The explo-

Figure 2. Agent’s viewing geometry. The agent (green)
looks at 315◦ (counterclockwise angles) with 90◦ viewing
aperture. Because of the presence of the obstacles (blue),
the goal (red) is not visible. The black areas are the in-
visible regions. We assume that a partially visible cell is
visible (gray).

ration/exploitation process is shown in the example of
Figure 3. In this scenario, the agent has a 360o viewing
angle and is able to recognize obstacles. At the begin-
ning, the goal is hidden and the agent has to explore the
unknown environment via movements, in an attempt to
discover it. One of the great features of the probabilistic
model is its capability of handling multiple goals simply
by spreading the probability distribution (the backward
distribution at the end of the chain) across multiple lo-
cations [13]. Therefore, in this limited-view scenario,
the entire hidden area is set as the goal for the agent, that

becomes attracted to it. The backward flow is computed
dynamically, and a maximum likelihood algorithm de-
termines the agent’s current action. Figure 3 shows how
the agent progressively discovers the hidden parts of the
map and finally discovers its goal. After that, the steps
are the usual ones that lead to the goal.

Figure 3. An agent with limited view that progressively
discovers obstacles and goal

Figure 4 shows a comparison of the paths re-
sulting when an agent has full knowledge of the
map, and when it has to explore before seeing
the goal. Evidently the path in the first case is
much shorter, but the agent achieves the goal in
both scenarios. Animation of various simulations
are available on our website: https:// www.mlsptlab-
unicampania.it/research/topics/path-modeling.html.

Figure 4. Paths obtained with a fully known map (left)
and after exploration due to limited view (right)

3. Concluding remarks
We find that the probability propagation paradigm

for determining paths in complex scenarios shows great
promise and is very robust with respect to map com-
plexity and uncertainties. We are working towards sce-
narios with multiple agents, the inclusion of reward
strategies, application to real maps and to the inclusion
of learning.
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